New 42-day free trial Get it now
Smarty

Let's build an xUnit-style test runner for Go!

Smarty header pin graphic
Updated October 29, 2025
Tags
Smarty header pin graphic

Writing test functions in Go is easy:

package stuff

import "testing"

func TestStuff(t *testing.T) {
    t.Log("Hello, World!")
}

Running test functions is also easy:

$ go test -v
=== RUN   TestStuff
--- PASS: TestStuff (0.00s)
	stuff_test.go:6: Hello, World!
PASS
ok  	github.com/smartystreets/stuff	0.006s

Preparing shared state for multiple test functions is problematic. The usual recommendation is to use table-drive tests. But this approach has its limits. For us, xUnit is the ideal solution. It's simple, lightweight, and flexible. Wouldn't it be nice if we could define test methods on struct types and leverage common xUnit conventions like setups/teardowns, skipped tests, etc..? I'm thinking along these imaginary lines:

package stuff

import "testing"

// Define fields to manage system-under-test here (the fixture state).
type TestCase struct {
	*testing.T // Embedding *testing.T seems like a good idea for defining a test suite.
	sut *SystemUnderTest
}

// Perform setup actions here (instantiate test fixture state).
func (t *TestCase) Setup() {
	t.sut = NewSystemUnderTest()
}

func (t *TestCase) Test42() {
	if result := t.sut.Computation(42); result != 42 {
		t.Errorf("Got: [%d] Want: [%d]", result, 42)
	}
}

func (t *TestCase) Test43() {
	if result := t.sut.Computation(43); result != 43 {
		t.Errorf("Got: [%d] Want: [%d]", result, 43)
	}
}

The only problem is that the go test tool expects top-level functions, not methods on a struct type. And that's not going to change.

$ go test -v
testing: warning: no tests to run
PASS
ok  	github.com/smartystreets/stuff	0.006s

So, we need a way to connect a test function to methods on a struct type. And ideally, we could instantiate new instances of that type (with freshly initialized state) for each test method. Maybe a variation that leverages subtests would be closer to reality?

package stuff

import "testing"

func TestStuff(t *testing.T) {
	t.Run("Test42", new(TestCase).Test42)
	t.Run("Test43", new(TestCase).Test43)
}

// Define fields to manage system-under-test here (the fixture state).
type TestCase struct {
	sut *SystemUnderTest
}

// Perform setup actions here (instantiate test fixture state).
func (test *TestCase) Setup() {
	test.sut = NewSystemUnderTest()
}

func (test *TestCase) Test42(t *testing.T) {
    test.Setup()
	if result := test.sut.Computation(42); result != 42 {
		t.Errorf("Got: [%d] Want: [%d]", result, 42)
	}
}

func (test *TestCase) Test43(t *testing.T) {
    test.Setup()
	if result := test.sut.Computation(43); result != 43 {
		t.Errorf("Got: [%d] Want: [%d]", result, 43)
	}
}

That was certainly more effective:

$ go test -v
=== RUN   TestStuff
=== RUN   TestStuff/Test42
=== RUN   TestStuff/Test43
--- PASS: TestStuff (0.00s)
    --- PASS: TestStuff/Test42 (0.00s)
    --- PASS: TestStuff/Test43 (0.00s)
PASS
ok  	github.com/smartystreets/stuff	0.006s

But there are problems with this approach. Every time we define a new test method on the TestCase type we have to remember to register a subtest in the top-level test function. Oh, and did you notice how each test was calling the Setup method directly? This is something that should happen automatically if we're going to call this an xUnit-style test runner. It would be great if we could just call a method that points to our TestCase and iterates all test methods, calling Setup followed by a call to the test method.

From the calling side it could look something like this:

func TestStuff(t *testing.T) {
    xunit.RunTests(new(TestCase), t)
}

Notice we have to provide the *testing.T and an instance of our TestCase. The behavior defined in the mysterious xunit package would then find all the tests and run them. Impossible, you say? Not so! In fact, a draft implementation is trivial!

package xunit

import (
	"reflect"
	"strings"
	"testing"
)

func RunTests(fixture interface{}, t *testing.T) {
	fixtureType := reflect.TypeOf(fixture)

	for x := 0; x < fixtureType.NumMethod(); x++ {
		testMethodName := fixtureType.Method(x).Name
		if strings.HasPrefix(testMethodName, "Test") {
			// IMPORTANT: each test gets a new instance!
			instance := reflect.New(fixtureType.Elem())

			setupMethod := instance.MethodByName("Setup")
			callableSetup := setupMethod.Interface().(func())
			callableSetup()

			testMethod := instance.MethodByName(testMethodName)
			callableTest := testMethod.Interface().(func(t *testing.T))
			t.Run(testMethodName, callableTest)
		}
	}
}

This implementation makes a LOT of assumptions, lacks several features (like 'teardowns' and skipped tests) and isn't very robust, but hopefully you can see the emergence of an xUnit-style test runner. Most importantly, the tests are passing again:

$ go test -v
=== RUN   TestStuff
=== RUN   TestStuff/Test42
=== RUN   TestStuff/Test43
--- PASS: TestStuff (0.00s)
    --- PASS: TestStuff/Test42 (0.00s)
    --- PASS: TestStuff/Test43 (0.00s)
PASS
ok  	github.com/smartystreets/stuff	0.006s

Congratulations, you now possess a basic understanding of the inner workings of gunit! Stay tuned for a future post featuring a more in-depth look into xUnit-style testing in Go with gunit. In the meantime, feel free to kick the tires and fix things up a bit.


Source Code Download

Subscribe to our blog!
Learn more about RSS feeds here.
Read our recent posts
Pinpoint 2025: Day 1 recap
Arrow Icon
For two days, Smarty users gathered together with other address data experts for Pinpoint, Smarty’s first virtual user conference, where developers, industry experts, and product specialists talked all things addresses and pulled back the curtain on address data solutions. Attendees asked questions about cloud-based software, the impact of accurate address data on fintech and insurance companies, and the ROI of good address data across all industries. Plus, attendees got to take a peek behind the scenes and see what makes Smarty’s address data solutions tick.
Pinpoint 2025: Day 2 recap
Arrow Icon
For two days, Smarty gathered address data experts for Pinpoint, our first-ever virtual user conference. There, developers, product specialists, and industry experts delved into the nitty-gritty details of address data that you need to understand in order to succeed in your industry. Attendees learned how to process addresses faster (much faster) than the blink of an eye, with and without using code! They also got to look under the hood on how insurance is evolving and becoming even more efficient than ever to create a “delightful user experience.
What to look for in an address data solution: Ease of implementation
Arrow Icon
You’ve maybe chosen an address data provider (or maybe you’ve just recently fallen out of love with the one you’ve got). Now comes the time to really test what matters: implementation. Even the best solution falls short if it’s hard to integrate, confusing to use, or impossible to maintain. This blog is part of our five-part series, What to look for in an address data solution. Previously, we discussed why human support teams should be top of mind when choosing an address data solution. Not just tech support, but educational materials, help getting started, and more.

Ready to get started?